共计 3143 个字符,预计需要花费 8 分钟才能阅读完成。
实验内容:图像的边缘轮廓提取算法:canny 算子、sobel 算子、拉普拉斯算子等
导入图像
import cv2 as cv | |
import matplotlib.pyplot as plt | |
img = cv.imread("1.png", 1) | |
img = cv.cvtColor(img, cv.COLOR_BGR2RGB) | |
# gray = cv.cvtColor(img, cv.COLOR_RGB2GRAY) | |
plt.imshow(img) |
canny 算子
canny_img = cv.Canny(img, 30, 150) | |
plt.imshow(canny_img, cmap='gray') |
sobel 算子
# gray_img = cv.cvtColor(img, cv.COLOR_RGB2GRAY) | |
sobel_x = cv.Sobel(img, cv.CV_16S, 1, 0, ksize=3) | |
sobel_y = cv.Sobel(img, cv.CV_16S, 0, 1, ksize=3) | |
scale_abs_x = cv.convertScaleAbs(sobel_x) | |
scale_abs_y = cv.convertScaleAbs(sobel_y) | |
sobel_img = cv.addWeighted(scale_abs_x, 0.5, scale_abs_y, 0.5, 0) | |
sobel_img = cv.cvtColor(sobel_img, cv.COLOR_RGB2GRAY) | |
# sobel_img = cv.Sobel(src=gray_img, ddepth=cv.CV_64F, dx=1, dy=1, ksize=1) | |
plt.imshow(sobel_img, cmap='gray') |
拉普拉斯算子
laplacian_img = cv.Laplacian(img, cv.CV_16S, ksize=3) | |
laplacian_img = cv.convertScaleAbs(laplacian_img) | |
laplacian_img = cv.cvtColor(laplacian_img, cv.COLOR_RGB2GRAY) | |
plt.imshow(laplacian_img, cmap='gray') |
基于相似度和区分度的边缘检测
原创
import numpy as np | |
def get_unit_similarity(a_4, b_4, k): | |
# a_4 = sorted(a_4) | |
# b_4 = sorted(b_4) | |
result = 0 | |
for i in range(4): | |
result = result + (abs(int(a_4[i]) - int(b_4[i]))) ** k | |
result = result ** (1/k) | |
return int(result) | |
def input_flag(flag, x, y, similarity): | |
for i in range(4): | |
if flag[x][y][i] == 0: | |
flag[x][y][i] = similarity | |
break | |
return flag | |
def get_channels_similarity(channel, k, rank): | |
row, col = channel.shape | |
flag = np.zeros((row - 1, col - 1, 4)) | |
result = np.zeros((row - 1, col - 1)) | |
for i in range(row - 2): | |
for j in range(col - 2): | |
array = [channel[i][j], channel[i][j + 1], channel[i + 1][j + 1], channel[i + 1][j]] | |
r_array = [channel[i][j + 1], channel[i + 1][j + 1], channel[i][j + 2], channel[i + 1][j + 2]] | |
d_array = [channel[i + 1][j + 1], channel[i + 1][j], channel[i + 2][j + 1], channel[i + 2][j]] | |
r_similarity = get_unit_similarity(array, r_array, k) | |
d_similarity = get_unit_similarity(array, d_array, k) | |
flag = input_flag(flag, i, j, r_similarity) | |
flag = input_flag(flag, i, j, d_similarity) | |
flag = input_flag(flag, i+1, j, r_similarity) | |
flag = input_flag(flag, i, j+1, d_similarity) | |
# result[i][j] = (r_similarity + d_similarity) / 2 | |
for i in range(row-2): | |
for j in range(col-2): | |
flag4 = sorted(flag[i][j]) | |
result[i][j] = flag4[4-rank] | |
return result | |
def get_qufendu(array): | |
return int(max(array)) - int(min(array)) | |
def get_channels_qufendu(channel): | |
row, col = channel.shape | |
result = np.zeros((row - 1, col - 1)) | |
for i in range(row-1): | |
for j in range(col-1): | |
array = [channel[i][j], channel[i][j + 1], channel[i + 1][j + 1], channel[i + 1][j]] | |
qufendu = get_qufendu(array) | |
result[i][j] = qufendu | |
return result | |
def mark(channel, similarity, qufendu): | |
row, col = similarity.shape | |
for i in range(row): | |
for j in range(col): | |
if similarity[i][j] > 50 and qufendu[i][j] > 20: | |
channel[i][j] = 0 | |
else: | |
channel[i][j] = 255 | |
return channel | |
def mark_similarity(img, k, rank): | |
p = cv.imread(img, 1) | |
b, g, r = cv.split(p) | |
b_similarity = get_channels_similarity(b, k, rank) | |
b_qufendu = get_channels_qufendu(b) | |
b = mark(b, b_similarity, b_qufendu) | |
g_similarity = get_channels_similarity(g, k, rank) | |
g_qufendu = get_channels_qufendu(g) | |
g = mark(g, g_similarity, g_qufendu) | |
r_similarity = get_channels_similarity(r, k, rank) | |
r_qufendu = get_channels_qufendu(r) | |
r = mark(r, r_similarity, r_qufendu) | |
p = cv.merge((b, g, r)) | |
# cv.imwrite(img[0:-4] + '_mark.png', p) | |
# plt.imshow(p) | |
return p |
img_addr = '1.png' | |
p_img = mark_similarity(img_addr, 1, 1) | |
p_img = cv.cvtColor(p_img, cv.COLOR_BGR2GRAY) | |
plt.imshow(p_img,cmap='gray') |
正文完